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1 Introduction

The econometric theory of vector autoregressive (VAR) models is well developed when the dimen-
sion of the model (N) is small and fixed whilst the number of time series observations (T') is large
and expanding. This framework, however, is not satisfactory for many empirical applications where
both dimensions N and T are large. Prominent examples include modelling of regional and national
interactions, the panel data analysis of a large number of firms or industries over time. It is clear
that without restrictions the parameters of the VAR model can not be consistently estimated in
cases where both N and T are large, since in such cases the number of unknown parameters grows
at a quadratic rate in N. To circumvent this ‘curse of dimensionality’, several techniques have
been suggested in the literature that can be broadly characterized as: (i) data shrinkage, and (i7)
parameter shrinkage. Factor models are examples of the former (see Geweke (1977), Sargent and
Sims (1977), Forni and Lippi (2001), Forni et al. (2000), and Forni et al. (2004)). Spatial models,
pioneered by Whittle (1954), and further developed by Cliff and Ord (1973), Anselin (1988), and
Kelejian and Robinson (1995), and Bayesian type restrictions (e.g. Doan, Litterman, and Sims
(1984)) are examples of the latter.

The analysis of infinite dimensional VAR (IVAR) models is considered in Chudik and Pesaran
(2010), who propose an alternative solution to the curse of dimensionality based on an a priori
classification of the units into neighbors and non-neighbors. The coefficients corresponding to the
non-neighboring units are restricted to vanish in the limit as N — oo, whereas the neighborhood
effects are left unrestricted. Neighbors could be individual units or, more generally, linear combi-
nations of the units (such as spatial or local averages). Such limiting restrictions on the parameters
of the VAR model turns out to be equivalent to data shrinkage as N — oo. Chudik and Pesaran
(CP) show that the properties of the IVAR model crucially depend on the extent of the cross
section dependence across the units. In the case where such dependencies are weak (in the sense
formalized by Chudik, Pesaran and Tosetti (2009)), CP establish that the IVAR model de-couples
into separate individual regressions that can be estimated consistently. They also consider the case
where the cross section units are strongly correlated, but confine their analysis to situations where
the source of strong cross section dependence is external to the model and originate from a finite
set of exogenously given factors. For the latter case they propose a cross sectionally augmented
least squares (CALS) estimator that they show to be consistent and asymptotically normal.

The present paper extends the analysis of CP to the case where one of the cross section units in
the IVAR model is dominant or pervasive, in the sense that it can influence the rest of the system

1" For example in the context of global

in a way that results in strong cross section dependence.
macroeconomic modelling the assumption that world consists of many small open economies could
not be satisfactory since the US economy alone accounts for more than a quarter of world output
and, in addition, the US is found to have an important influence on financial markets around the
globe, see for example Pesaran, Schuermann, and Weiner (2004). This raises not only the question

of how to model the US macroeconomic variables, but also how to model the remaining economies.

! Concepts of strong and weak cross section dependence, introduced in Chudik, Pesaran and Tosetti (2009), will
be applied to VAR models.



Another example could be the modelling of house prices in different regions in the UK, where
developments in London have a large influence on many other regions; see Holly, Pesaran, and
Yamagata (2010) for a recent application.

Allowing for the presence of a dominant unit is clearly important, but to date little is known
about the estimation of such systems. This paper contributes to the literature in this direction.
This extension is not straightforward and involves several technical difficulties. The dominant unit
influences the rest of the variables in the IVAR model both directly and indirectly, and its effects do
not vanish even as the dimension of the model (NV) tends to infinity. The dominant unit acts as a
dynamic factor in the regressions of the non-dominant units and yields an infinite order distributed
lag relation between the two types of units. Despite this it is shown that the effects of the dominant
unit as well as those of the neighborhood units can be consistently estimated by running augmented
least square (ALS) regressions that include distributed lag functions of the dominant unit. The
asymptotic distribution of the estimators is derived and their small sample properties investigated
by means of Monte Carlo experiments.

The remainder of this paper is organized as follows. Section 2 sets up the IVAR model with a
dominant unit. Section 3 derives infinite order moving average or autoregressive approximations for
the cross section units and discusses the conditions under which the IVAR model yields a dynamic
factor model with the dominant unit acting as the factor. The asymptotic distribution of the ALS
estimator is derived and discussed in Section 4. Section 5 investigates finite sample properties of
the ALS estimator by means of Monte Carlo experiments. Section 6 provides some concluding
remarks. Selected proofs and other technical details are given in the Appendix.

Notations: ||All; = max S N | |aij| denotes the column matrix norm of the N x N matrix A,
<j<

Al = Juax Z;\le |a;;| is the row matrix norm of A. ||A] = /o (A’A) is the spectral norm of A,
<i<

where o (A) is the spectral radius of A.2 All vectors are column vectors. The i row of A with its
it" element replaced by a 0 is denoted by a’; = (ai1,a2,...,0ii-1,0,0i 41, ...,a; n). The ith row of A
with its first and i** elements replaced by 0 is denoted by a’_lj_i = (0, a2, ..., @ii—1,0, Qi 11, ..., G N)-
a; = (a1, a9, ...,aNl)/ denotes the first column vector of A. A matrix constructed from A by
replacing its first column by a column vector of zeros is denoted as A_1. ||zt is Lp-norm of a

p, (N,T) % 0o denotes joint asymptotics in N and T,

random variable x;, defined as (E |z¢")
with N and 7' — oo, in no particular order. a, = O(b,) denotes that the deterministic sequence
{an} is at most of order b,. x, = O (y,) states that random variable z,, is at most of order y,
in probability. R is the set of real numbers, N is the set of natural numbers, and Z is the set of
integers. Convergence in distribution and convergence in probability are denoted by 2 and 2,
respectively. Convergence in quadratic mean, and convergence in L1 norm are denoted by % and
L—1>, respectively. We use K and p to denote positive real numbers that do not vary with N and/or

T.

*Note that if x is a vector, then ||x|| = 1/0 (x'x) = v/x'x corresponds to the Euclidean length of vector x.




2 The IVAR Model with a Dominant Unit

Suppose we have T' time series observations on N cross section units indexed by ¢ € Sy =
{1,..,N} € N. Both dimensions, N and T, are assumed to be large. For each point in time, ¢,
and for each N € N, the N cross section observations are collected in the N dimensional vector,

X(N)t = (iL‘(N)Jt,.CC(N)Qt, ...,ZC(N)JV,:)/, and it is assumed that x(yy, follows the VAR(1) model

XNyt = P)X@v) -1 T 0y e (1)

where ®(y) is an N x N matrix of unknown coefficients and u(y); is an N x 1 vector of error
terms. To distinguish high dimensional VAR models from the standard specifications we refer to
the sequence of VAR models (1) of growing dimensions (N — o0) as the infinite dimensional VARs
or IVARs for short.? The extension of the IVAR(1) to the p!* order IVAR model where p is fixed,
is relatively straightforward and will not be attempted in this paper.

The explicit dependence of the variables and the parameters of the IVAR model on N is sup-
pressed in the remainder of the paper to simplify the notations, but it will be understood that
in general they vary with N, unless stated otherwise. In what follows we shall also focus on the
problem of estimation of the parameters of individual units in (1). In particular, we consider the

equation for the i*" unit that we write as

N

Tip = Z (bijl‘]}t—l 4+ u;, fort =1,2,...,T. (2)
j=1

Clearly, it is not possible to estimate all the N coefficients ¢;;, j = 1,.., N, when N and T" grow
at the same rate, unless suitable restrictions are placed on some of the coefficients. One such

restriction is the ‘cross section absolute summability condition’,

N
Z‘gf)ij}<KforanyN€Nandanyi€{1,..,]\7}, (3)
j=1

which ensures that the variance of z;; conditional on information available at time ¢ — ¢, for any
fixed £ > 0, exits for all N and as N — oo. The Lasso and Ridge shrinkage methods also use similar
constraints.? Condition (3) implies that many of the coefficients are infinitesimal (as N — 00).
However, assuming a mere existence of an upper bound K in (3) need not be sufficient to deal
with the dimensionality problem and we impose additional restrictions below. We follow CP and

suppose that in addition to (3), it is possible, for each i € N, to divide the units into ‘neighbors’

3The sequence of models obtained from (1) for different values of N is compatible with both cases where
cov (x(N),it,x(N),jt) changes with N or is invariant to N. We allow for both possibilities since in some applica-
tions the covariance between individual units could change with the inclusion of a new unit - as it is likely to be the
case when modelling firms or assets within expanding markets. For further details see Chudik and Pesaran (2010).

4These ‘data mining’ methods attempt at estimating all the unknown coefficients of the " equation, bijy J =

1,.., N, by minimizing ZtT:1 u?, subject to Z;V:I |¢Z~j| < K (Lasso) or Z;\;l ¢fj < K (Ridge). But the outcome,
perhaps not surprisingly, only yields a relatively small number of non-zero estimates. See Chapter 3.4.3 of Hastie,
Tibshirani, and Friedman (2001) for detailed descriptions of Lasso and Ridge regression shrinkage methods.



and ‘non-neighbors’. But depart from CP by allowing one of the units, which we take to be the
first unit without loss of generality, to be dominant or pervasive in the sense to be made precise
below. Also given our focus, to simplify the analysis we abstract from the effects of other neighbors
apart form that of the dominant unit and own lags. In a dynamic sense the lagged value of the "

unit can also be viewed as the i*" neighbor.

ASSUMPTION 1 (Neighbors and non-neighbors) The neighbors of unit i are units 1 and i, and
the remaining units are non-neighbors. That is, the following conditions are satisfied. Coefficients

corresponding to neighbors, namely ¢;; and ¢;;, fori =1,2, ..., do not change with N. There exists

(1
a constant K < oo (independent of i and N ) such that the coefficients corresponding to neighbors
satisfy |¢y;) < K, |¢;1| < K, for alli € N,

N
Z’¢i1‘:O(N): (4)

and the coefficients corresponding to non-neighbors satisfy

K
[9-1lloe = mex [éy] < . (5)
and .
H¢—1,—iHoo = j6{2?.1,?\bf}§\{i} ‘¢ij| < N (6)

for any N € N and any i € {2,3,..., N}, where ¢_y = (0, 19, 13, -, d1n) and
& 1 i =(0,0p, P55 10,011, ¢¢N)/-

The division of units in Assumption 1 imposes sufficient number of constraints that allows us to
tackle the dimensionality problem. Consider the problem of estimation of the unknown coeflicient
¢;;- We have

Tit = PyiTip—1 + Py T10-1 + Z GijTit—1 + Uit (7)

Neighbors J#Li

Non—neighbors

for i = 2,3,..., N, and the estimation of the neighboring coefficients, ¢,; and ¢;;, depends on the
stochastic behavior of the cross section average > A1 ¢i;x4t—1, which captures the aggregate spa-
tiotemporal impact of non-neighbors. CP shows that if {z;;} is cross sectionally weakly dependent,
then the aggregate impact of non-neighbors 0 as N — oo and therefore ignoring the non-
neighbors would not be a problem for estimation of ¢,;. However, in our set-up, the unit 1 can
potentially have a large impact on any of the remaining N — 1 units and therefore {z;} could be
cross sectionally strongly dependent. In the case of strong cross section dependence, the aggregate
impact of non-neighbors is Oy, (1), and it will not be possible to consistently estimate the coefficients
of the neighboring units by ignoring the non-neighborhood effects.

The coefficients in the first column of matrix ® correspond to the direct lagged impact of unit

1 on the rest of the system. The pervasive nature of unit 1 as characterized by (4) represents an



important departure from the set up in CP, where the influence of any of the cross section units
on the rest of the system is restricted by assumption | ®|| < K. In this paper ||®| is allowed to be
unbounded in N, but only through the dominant effect of unit 1.
Similar considerations also apply to contemporaneous dependence of the units through the error
terms, uy = (u¢, ugg, ..., unt)’. Let
u; = Rey, (8)

where R is the N x N matrix of non-stochastic coefficients, and e; = (g1, €2t ..., sNt)/ isan N x 1
vector of random variables. This formulation is quite general and includes all models of spatial
dependence considered in the literature, where it is assumed that R has bounded row and column
matrix norms.’ In the assumption below we relax this condition and allow for the first column of
R to be unbounded.

ASSUMPTION 2 (Error terms and contemporaneous dominance) The contemporaneous depen-
dence of the errors wy = (u1t, Uat,...,unt) in (1) is characterized by (8), where the individual
elements of the double index array {e;1,1 € N,t € Z} are independently distributed with mean 0, fi-
nite variances, and finite fourth moments uniformly bounded in i € N. Consider the decomposition
of R

R:I’ls{l +R_q, 9)

where r1 = (111,721, -...,7N1)" @8 the first column of R, coefficients in r1 do not change with N, sy
is an N x 1 selection vector, s; = (1,0,...,0)", and R_1 is obtained from R by replacing its first
column with a vector of zeros. Assume that ry; = 1 for all i € N (without the loss of generality)

and that there exists a constant K < oo (independent of i and N ) such that

Var (ey) = agi < K, (10)
[R-1ll; < K, [R-1]l < K, (11)
and
_ = | < —, 12
r—1llo jemax Irl < & (12)

for any N € N, where r_1 = (0,712,713, ...,7"1N)' is the N x 1 column wvector constructed from the
first row of R_1. In addition, |ry1| < K, for alli € N, and

N
> fral =0 (N). (13)
=1

Under this assumption the error of the first cross section unit acts as a (static) common factor
for the rest of the units. Condition (13) allows for the first cross section unit to have a dominant
effect on all the other cross section units. The boundedness of R_; ensures that no other cross

section units has a dominant effect on the rest of the units.

See Pesaran and Tosetti (2009) for further details.



The above set up can be generalized to two or more dominant units so long as the number of
such units is fixed and does not change with N. In this paper we focus on IVAR models with one
dominant unit and assume that the dominant unit is known a priori. The analysis of models with
more than one dominant units and the problem of how to identify such units will be outside the

scope of the present paper.

3 Large N Representations

The presence of a dominant unit in the IVAR model considerably complicates the analysis. This
is because the effects of the dominant unit show up in all other units both contemporaneously as
well as being distributed over time in the form of infinite order moving average or autoregressive
representations. For empirical analysis it is important that conditions under which such infinite
order processes can be well approximated by time series models with a finite number of unknown
parameters are met. To this end we introduce a number of further assumptions restricting the

behavior of ® and R for a finite N as well as when N — oo.

ASSUMPTION 3 (Starting values and stationarity) Available observations are Xg,X1, ..., Xy with
X0 = Y 00 U (L), and there exists a real positive constant p < 1 (independent of N ) such that
for any N € N

A (@) < p. (14)

ASSUMPTION 4 (Bounded variances and invertibility of large N ARMA representations) Sim-
ilarly to (9) let

P =) + Py, (15)
where ®_1 s obtained from ® by replacing its first column with a column of zeros and ¢, s the

first column of ®. Assume that there exists a real positive constant p < 1 (independent of N ) such
that for any N € N :

[®-1lly <p; [Pl < p. (16)
and
= < ).
1l = mavx [61] < p (17)
Furthermore,
max jen 11| < 1. (18)

Remark 1 Condition (14) of Assumption 3 is a well known sufficient condition for covariance
stationarity for any fired N € N. This condition, however, is not sufficient for Var(xzy) to remain
bounded as N — oo. As shown in Chudik and Pesaran (2010), |®| < p < 1 would be sufficient
for bounded variances (as N — o0), but in our set-up ||®|| is unbounded due to the presence of
a dominant unit in the IVAR model. Assumption 4 provides additional sufficient conditions for
bounded variances (as N — 00) and also for the existence of an invertible large N AR(co) and

MA(c0) processes for the dominant unit.



Using the notations introduced in Assumptions 2 and 4 (see equations (9) and (15)), model (1)

can be written as

X; = ((;Sls/1 + <I>_1) X¢—1 + (1'15/1 + R—l) €t,
= P11+ P_1x4_1 +ric + ey, (19)
where
e = R,1€t. (20)

Solving for x; by backward substitution yields

o o
xp =Y @ P+ Y irien g+, (21)
=0 £=0
where -
vi=> & ey (22)
=0

Lemma 1 Suppose Assumption 2-4 hold. Then for any N x 1 vector a satisfying condition ||al| =
O (N_l/z) we have
Var (a'vt) =Var (a’ Z <I>£1etg> =0 (Nfl) ,
=0
where vy is defined by (22).

Proof.

i

o0
> a'® R Var(e,)R.,3%a
/=0

Var (a'v;) = ||[Var (') || =

< al IR-af* Y @1 ]* [[Var (el (23)
=0

But |R_1]|* < |R_1]|o, [R_1]]; = O (1) by condition (11) of Assumption 2, ||[Var (e;_¢)|| < K (for
any £ = 0,1,2, ...) by condition (10) of Assumption 2, ||a]®> = O (N7Y, @1l < V@l 21l
p by condition (16) of Assumption 4 and )2, 1@ _1]* < Y0¥ < K . Hence, ||[Var (a'vy)|| =
0] (N_l), as required. m

Lemma 1 establishes that v, is cross sectionally weekly dependent (CWD), and in particular
av, =0, (N_1/2) for any vector a satisfying ||al| = O (N_l/Q). For the non-dominant units, ¢ > 1,
using (21) we have

xip = d;i (L) 1,0—1 + b; (L) €1¢ + v, (24)

o
where v;; = sjvy,

[M]8

ai (L) = (si@’ 1) LY, (25)

l

I
o



Z (s o 1r1> (26)

(=

and s; is an N x 1 dimensional selection vector with s;; = 0 for j # i and s; = 1. In the case of

the dominant unit (¢ = 1) equation (21) yields,

c(L)z1e = b1 (L)1 + vy, (27)
where -
bi(L) =Y (s1@%m) I, (28)
=0
c(L)=1—di (D) L=1-) (si®1¢) L, (29)
=0

and vy; = sjv;. Note that vy can be written as

vit = 251 —1€t— é—€1t+zsl ~1€t—¢
/ -1
= ep+s5:P_1 Z P ey

But s{®_; = ¢’ ;, and
[o.¢]
Z ‘I’_l €ty = Zq’€1et—5—1 = Ut-1-
=0

Hence
v = e+ ¢ v (30)

Also it is easily seen that e;; = s{R_1ey =1/ &, and vy 1 = Y 24 @e_ElR,lst_g both have zero

means and are uncorrelated. Therefore
Var (vi) = Var (rLlst) +Var (qSlet_l) =0 (Nfl) , (31)

where
Var (r'_1e;) = v Var (e) r_1 < |[r_1|]* [[Var ()],

1] < lrafly lr—sill; = O (N1) by (12) of Assumption 2 , ||[Var (e;)|| < K by condition (10)
of Assumption 2, and Var (¢let 1) =0 ( ) follows from Lemma 1 by setting a = ¢_; and
noting that ||¢_,|| < \/H¢_1Hoo H(ﬁ_lHl =0 (N 1/2) by condition (5) of Assumption 1. Therefore,
since E (v1y) = 0, then

v =0, (N*l/Q) , (32)

and equation (27) can be written as

¢(L)zy = by (L)ere + O, (N*W) , (33)



which is a large N ARMA (00, 00) representation of the process for the dominant unit.

The next lemma establishes invertibility of polynomials by (L) and ¢ (L).

Lemma 2 Suppose Assumption 4 holds. Then inverses of the polynomials by (L) and ¢ (L), defined
by (28) and (29), respectively, exist for any N € N, and coefficients of polynomials bl_1 (L) and
c Y (L) decay at an exponential rate uniformly in N. Also, there exist real positive constants K < oo
and p < 1 such that

lag| < Kp, for any £ € {0,1,2,...} and any N € N, (34)

where -
a(L) =Y al’=b"(L)c(L). (35)

£=0

Proof. Coefficients of the polynomial ¢ (L) = Y 32, c,L*, as defined by equation (29), satisfy:

sﬁ@g__llqbl’ < H<I>£__11H |1l for any ¢ € N. Conditions (16) and (17) of
oo

Assumption 4 postulate that |[®_1|| < p < 1 and ||¢|,, < p < 1, which implies that |c,| < p* for

co = 1, and |¢g| =

any ¢ € N. Invertibility of ¢ (L) and exponential decay of the coefficients in ¢! (L) now directly
follows from Lemma A.1. Exponential decay of the coefficients in ¢~! (L) is uniform in N, because
p does not depend on N € N.

Coefficients of the polynomial by (L) = > ;2 bie LY, as defined by equation (28), satisfy bjp = 1,
and |byy| = }s’lqlg_lrl‘ < |’¢.Z_1HOO |lr1]|, for any £ € N. Conditions (16) and (18) of Assumption
4 imply H<I>Z_1Hoo Ir1,, < pf, which establishes |byy| < p° for any ¢ € N. Invertibility of by (L)
and the exponential decay of the coefficients in bfl (L) now follows from Lemma A.1l. Similarly to
¢ (L), the coefficients of by * (L) exponentially decay uniformly in N € N.

Noting that |c,| < p’ for any £ = 0,1,2,.., and that the coefficients of bfl (L) decay exponen-
tially, it follows that the coefficients of a (L) = by ' (L) ¢ (L) must also decay at an exponential rate.
This completes the proof. m

It is worth noting that conditions ||®_1||,, < p < 1 and ||| < p < 1 of Assumption 4 are
sufficient to ensure that ¢ (L) is invertible and the coefficients of ¢™1(L) decay exponentially. On
the other hand conditions ||®_1]|,, < p < 1 and max;ecy |ri1| < 1, are sufficient in ensuring that
by (L) is invertible and the coefficients of bl_1 (L) decay exponentially. The exponential decay of the
coefficients in these polynomials will be relevant for the selection of truncation lags in empirical

applications as discussed below.

3.1 Large N AR and MA representations for the dominant unit

Multiplying both sides of (27) by b;* (L) we obtain

a(L)z1 = €1t + U, (36)

10



where ¥y = by * (L) v1;. By Lemma 2 the coefficients of by ' (L) decay exponentially and hence are

absolute summable, and in view of (31) we have
Var (9y) =0 (N71) . (37)
Also since E (9y;) = 0, it follows that
Iy = by (L) vy = O, (N—1/2) . (38)
Using this result in (36) yields the following large N AR(o0) representation for the dominant unit,
a(L)ay = ey + O, (N—W) . (39)
Similarly, multiplying both sides of (27) by ¢~! (L) we obtain
z1e =a " (L) ey + Ve, (40)

where a=! (L) = ¢ (L) by (L), and 9y = ¢~ (L) vy;. Using similar arguments as in derivation of
(37)
Var (9a) =0 (N71), (41)

and since E (¥.) = 0, then
Yot = ¢ L (L) vy = O, (N—1/2) , (42)

and we have the following large N MA(co) representation for xy;,

z1p=a ' (L)ew + O, (N*1/2> . (43)

3.2 Large N representation for the non-dominant units i > 1

Consider now the equation for unit ¢ > 1. Using (1) we have (noting that u; = 1614 + €t)
Tit = GuTit—1 + @1 Xe1 4+ GpT1e-1 + T + €ir. (44)

Multiplying both sides of (21) by ¢/—1,—z‘ yields

¢ 1 _ixe =pi (L) w11+ ki (D) e + @14 v, (45)
where -
L) = (¢ @00 L', (46)
=0
and -
k(L) =Y (¢’_1 _Z-<I>_1r1) It (47)
=0

11



Substituting (45) in (44) and using (27) to eliminate £1; from (44) we have

Tip = Gyxip—1 + By (L) x1e + e + (o (48)
where
Bi (L) = ¢ L +pi (L) L*+ [riv + ki (L) L] a (L), (49)
and
Cit = @111 — [rin + ki (L) L] Dat. (50)

Taking Lo-norm of (50) and using triangle inequality we obtain

1Callz, < H¢/—1,—ivt—1HL2 + [[[rix + ki (L) L] Il 1, - (51)

But under condition (6) in Assumption 1, we have H¢—1,—1HOO = O (N1) uniformly ini € {2,3,...},
which implies that H‘ﬁ—l,—iH =0 (N_I/Q), and it follows from Lemma 1 (by setting a = ¢_; _;)
that

Var (¢ _jvi-1) =0 (N~1), uniformly in i € {2,3,...},

and (noting that E (v¢) = 0)
|61 —viall, = O (N72), uniformly in i € {2,3,..}. (52)

Also by (37) and noting that the coefficients of k;(L) decay exponentially to zero uniformly in
i €{2,3,...} (see proof of Lemma 3 below) and F () = 0, we have

|[ra1 + ki (L) L) 0|, = O (N—1/2) , uniformly in i € {2,3,...}. (53)
Using (52) and (53) in (51) and noting that E ((;;) = 0, we have
Var (¢;) = ||Cit||%2 = O (N71), uniformly in i € {2,3,...}, (54)

and
Cip = Oy (N_1/2) , uniformly in i € {2,3,...}. (55)

Hence, the large N representation of the process for the non-dominant unit ¢ > 1 is given by
Tit = ¢5Tit—1 + B; (L) 21t + eir + Op (N_1/2) : (56)

It is valid to exclude the contemporaneous values of x1; from (56) if and only if ;7 = 0, for ¢ > 1.
However, x1 ;1 enters the regression equation for the ith unit even if r;; = ¢;1 = 0. Note also that
in general the polynomial 3; (L) is of infinite order, and the errors, e;;, are serially uncorrelated

but cross sectionally weakly dependent.

Lemma 3 Suppose Assumption 4 holds. Then there exist real positive constants K < oo and
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0 < p <1 such that
80| < Kp* for any £ €{0,1,2,...}, any N € N and any i € {1,2,...,N}, (57)
where B3 is defined by the coefficients of polynomial 3; (L) = 02 By Lt in (49).

Proof. Existence of real positive constants K < oo and 0 < p < 1 (independent of N) such
that |ag| < Kp’ was established in Lemma 2. Coefficients of polynomials p; (L) = Y32, pieL* and
ki (L) = Y02 ki L*, as defined by equations (46) and (47), respectively, satisfy:

Cbl—l,—i‘I)é—lfblHoo < Kp', and |k < Hfbl_L_i‘I’K_lh

il < | < Ko, (58)
o0

where ||y ;|| = ;.1 |0i| < K by (6) of Assumption 1, ||[®°,| < p* < 1 by (16) of
Assumption 4, ||¢;|, < p <1 by (17) of Assumption 4, and ||r1]|,, = max;—1, n |ri1| <1 by (18)
of Assumption 4. Result (57) now directly follows by noting that linear combinations and products
of polynomials with exponentially decaying coefficients are also polynomials with exponentially

decaying coefficients. =

4 Asymptotic Distribution of the Augmented Least Squares Esti-

mator

4.1 Specification of Augmented Regressions

Based on the large N representation (39) for the dominant unit, and the representation (56) for

the non-dominant units (¢ > 1), we consider the following regressions:

Lit :g;tﬂ'i‘i‘@‘t, for i = 1,2,...,N, (59)
where
!/ .
T1t—1,T1t-2, - T1t—m) ,  fori=1
git = (21 t t—m) / ‘ (60)
(Tid—1, 10, 115 ooy T14—m)  fori>1
— (a1, a2, ..., am)’, fori=1 (61)
i = ‘
(Gsis Bios Bits s Bim) fori > 1
Yo1r + Ot + €16, fori=1
€t = mlt t t . (62)
Vit + Cip + e fori>1
and
-y agxr14—¢, fori=1
Ymit = %_mﬂ et , ) (63)
> remg1 Bim1g—e  fori>1

Note that there are m regressors (and m unknown coefficients) in the regression for the dominant
unit ¢ = 1, and m + 2 regressors in the regressions for the non-dominant units, ¢ > 1.

The error term €;; in (62) is decomposed into three parts: the component 1,,;, is due to the

mit
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truncation of the infinite order lag polynomials a (L) in the case of the dominant unit and ; (L),

for ¢ > 1. Since the coefficients in these polynomials are absolutely summable, we have
Uit 70, as m — oo,

for any N € N, any i € {1,2,...,N} and any ¢t € {1,2,...,T}. The second terms, ¥Jy; (in the case
of the dominant unit), and (j, for i > 1, are O, (N_l/z). (See (38) and (55)). These terms arise
from aggregation of weak dependencies in the individual-specific equations of the IVAR model,
(1). The third terms in (62) are serially uncorrelated errors, with €1; being orthogonal to e;; for
any ¢ > 1. Also as noted above e;; are cross sectionally weakly dependent, although ignoring such
dependencies does not adversely impact the consistency of the estimators to be proposed here.

For future references, let

h;; = (gl,t—lagl,t—% --~7§1,t—m) for z =1 (64)
(i1 10 €115 s €1 ) fori>1
and
C; = E (h;hj,) , (65)
where
a(L)&y = e, (66)
and
(1 — Qb”L) git = BZ (L) glt + €ty for ¢ = 2, 3, ..N. (67)
Process {¢;;} is large N counterpart of {z;;} in the following sense,
Tit — & = Op (N71/2) , for any 7 € N. (68)

Note that for any i, &,; is a linear stationary process with absolute summable autocovariances.

4.2 Consistency of the Augmented Least Squares Estimator

In what follows we focus on the estimation of the parameters of the non-dominant units, ¢ > 1. The
results for the dominant unit can be derived in a similar way and are not included to save space.

We denote the least squares estimator of the vector of unknown coefficients m; as

—ai Pii
~ —a2 ~ Bio .
T = and m; = ) , for i > 1,
mx1 (m+2)x1

—Qm Bzm

where gAb“ refers to the augmented least squares (ALS) estimator of the own lag coefficient ¢,;,

~

Bivs £ = 0,1,2,...,m, denote the estimators of the first m + 1 coefficients in ,(L), and ay for

14



¢ =1,2,...,m denote the estimators of the corresponding coefficients in a(L).
Note that the first two coefficients in 5;(L), as defined by (49), are (for ¢ = 2,3, ....,N)

Bio = Tit, (69)

and
B = b + rinar + kioao = ¢y — i1 (@111 4 ¢11) + @741, (70)

where ki = ¢’y _;r1. See k; (L) defined by (47). Also using ¢(L) and by (L) given by (29) and

(28), respectively, we have ,
co = 1761 = —¢11, and b10 = 1,b11 = ¢’,1r1.
Hence, (using a (L) in (35)) we have

ap =1, a1 = —py; — 11, (71)

The higher order lag coefficients, 3;, and ay for £ = 2,3, ..., in general depend on all elements of ®
and r; and can be obtained similarly.

Result (69) shows that the contemporaneous effects of the dominant unit on the rest of the units,
ri1, for ¢ > 1, can be identified from (3,;, and consistently estimated by @0. The own-lag effects of the
non-dominant units, ¢,; (for ¢ > 1), can also be consistently estimated using the unit-specific ALS
regressions in (59). But due to the feedback effects from non-dominant units, the own-lag effect of
the dominant unit, ¢, cannot be identified from a;. Using (71) we have ¢y; = —ay + ¢’ ;r1, where
¢ _r1 = SN o0, maxsy |¢y;| < KN7L, and 71,4 > 1, are coefficients that do not vary with N.
Hence ¢ ;r; is O(1) and does not vanish as N — oco. Using the estimates from the regressions for
the non-dominant units we are able to identify r;;. But due to the negligible lagged effects from
the non-dominant units on the dominant unit, the parameters ¢,;, for ¢ > 1 can not be identified
when N — oco. As a result a consistent estimate of Zf\i2¢1iri1 can not be obtained. Consequently,
¢11 is not identified when N — oco. Accordingly, in the Monte Carlo experiments below, we shall
only consider the finite sample properties of Bio and ?qgu

It is convenient to re-write (59) for t =m +1,m +2,...,T in a matrix form as

x;. = Gym; + €., for ¢ > 1, (72)
where
imi1 Timt1 €im+1
/
g m-+2 Tim+2 €im+2
G; = b . X = . ,and €. = : . (73)
(T—m)x(m+2) : (T—m)x1 : (T—m)x1 :
/
81 L4, €T

)
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Hence,
7= (G/G) ' Gixi. . (74)

In the general case where 3; (L) is not a finite order polynomial the truncation lag m has to be
selected depending on the available time series data, 7', so that omission of the higher order lags
of x1; is asymptotically negligible. We use subscript 1" to denote this explicit dependence of the
truncation lag on the available time series data in the remainder of this paper, namely we set

mp = m (T), and consider the following types of convergence for N, T" and myp.

ASSUMPTION B1 m3. /T — 5, where 0 < 31 < 00, as T — o0.
ASSUMPTION B2 (N,T) - o at any order.
ASSUMPTION B3 (N, T) 4 oo, and T/N — s, where 0 < 30 < oc.

Remark 2 Assumption B1 presents a sufficient condition on the truncation lag mr under which
7; 1s consistent and asymptotically normal. Assumption B1 can also be replaced by the following
two conditions:

m%/T — 0, (75)

and
lim p™"VT =0 for any 0 < p < 1. (76)

T—o0
Condition (76) ensures that mp increase sufficiently rapidly so that the omitted variable problem
from truncation of higher order lags is asymptotically negligible. Condition (75) ensures a sufficient
degree of freedom to reliably estimate individual coefficients. Under Assumption B1 both of the above

two conditions will be satisfied.

Identification of 7r; requires invertibility of G}G;, which is postulated in the following assump-

tion.

ASSUMPTION 5 There exist integers Ty € N and Ny € N such that for all T > Ty, and N > Ny,

matriz GG, is invertible.

Let .
C; = ~G!G,. 77
T (2 ( )
Substitute (72) in (74) to obtain
~_,Gle;.
vT 7/1\'1'—771‘ = C-ﬁ1 ZZ,
( ) 7 ﬁ
~ Gle;. Gle
= (Cl-ct) 2 4ot 22
( K3 K] ) /T 3 /T
S Gle;.
J— —1 _ —1 [
_ (Ci C; ) =

(G; —H;) e;.  Hle, +G§Ci- +G;¢z‘~
VT VT VT VT

, fori > 1, (78)



where

i,mp+1
/
i,mp+2
(T—mr)Xx(mr+2) :
/
h;
and
€imrt1 Cimp+1 Yo i mp+1
€imr+2 C’i,mT+2 ¢mT,i,mT+2
€;. = . s Cz = . ) wz = . (80)
(T—m7)x1 : (T—mr)x1 : (T—mr)x1
€ir CiT meiT

Note that €;. = e;. + ;. + ¥,., for i > 1, see (62).

We deal with the estimation of infinite order lag polynomials in a similar way as in Said and
Dickey (1984) or Berk (1974). The following lemmas are needed to establish the consistency of 7;.
Lemmas 4-6 are required for dealing with infinite lag orders, and Lemmas 7 and 8 are needed for
averaging out the effects of weak dependencies (after conditioning on current and lagged values of
the dominant unit) in the IVAR model (1).

Lemma 4 Suppose x; is given by model (1) and Assumptions 1-4, B1, and B2 hold. Then for any
i > 1 we have,
2o,

&~

where C; and C; are defined by (65) and (77), respectively.

Proof.
mp+2

= Z [Cije — cijel (81)

0o ]E{l, 7TnT+2}

~
(2

where c¢;jo and ¢;j denote the (j, E)th elements of C; and (AJZ-, respectively. Liapunov’s inequality

and Lemma A.3 in Appendix establish

1
VT’
where K < oo does not depend on N, mp € N, and j,¢ € {1,2,...,mp + 2}. Taking expectations
of both sides of (81) and making use of (82) yields

i §K<mT+2>.
- T

But under Assumption Bl, m%/T — 0, and hence ‘ Al —

E|Cije — cije] < \/E {(/C\ijf - Cijf)Q} <K (82)

Ly .
= 0. Convergence in L; norm
o0

implies convergence in probability. m
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Lemma 5 Suppose x; is given by model (1) and Assumptions 1-5, B1 and B2 hold. Then for any

1> 1 we have,

p
— 0,

& -]

where C; and C; are defined by (65) and (77), respectively.

Proof. Let p. = HCi_lHOO, Qe = H(Ajl_1 — Ci_lH ,and r. = ‘(AJZ —C;
[o¢]

and submultiplicative property of matrix norm ||.||, we have

. Using triangle inequality
o0

et (e -e) e,

o0

dc

IN

|| repes
< e oty ver e

< (pc + QC) TcPe,

and (subtracting r.p.q. from both sides)

(1 - 7qcpc) qc S pzrc- (83)

Note that 7. = 0 by Lemma 4, and p. = O (1) since &;, for i € {1,2,.., N}, is a stationary

invertible process with absolute summable autocovariances. Therefore
(1 - Tcpc) = L (84)

and
pzrc 2. (85)

Results (83)-(85) imply that ¢. — 0, as desired. m

Lemma 6 Suppose x; is given by model (1) and Assumptions 1-4, B1 and B2 hold. Then for any

1> 1 we have,

p
— 0,

H Gt
VT
where ;. is defined by (80), and G; is defined by (73).

o0

Proof. Each of the individual elements of G/};./ VT can be expressed as

1 T
ﬁ Z Tjt—sVmeit:

t=mp—+1

®Here we have used the fact that for any real constant 0 < e < 1, the probability of r.p. > € can be made
arbitrarily small by choosing T sufficiently large, since 7cpe - 0.
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for a suitable choice of j € {1,i}, and s € {0, 1,2,...,mr}, where ¢,,,_;; is defined by (63). We have

T
1
Ti-sty| < —= Ezj syl
T
1 1/2
< = Y |Bpe)? B’
t:mT—i-l
1 T 1/2 > 1/
< E (22 S [E (22 6
< ﬁt:§+le{T§§N}[ (23, )] g_%:“'ﬁw'[ («3,_,)] "/ {86)

where the second inequality follows from the Cauchy-Schwarz inequality and the third inequality
uses the triangle inequality, which implies |1y, <322, 11 [Bil |z14—ell;,- But by Lemma A.2
maXje(1 2, N} E( ) < K, and (86) now yields

T 00
Y7 miamsty| SKVT D Byl

t=mp+1 l=mp+1

VT
But using Lemma 3 (for 0 < p < 1)

\/> mT+1
T Z ’Bz(’ < K——— p )

= mT+1 p
and under Assumptions B1-B2, and noting that K < oo does not depend on N, or T', we have
0.@)
VT Z |Biel — 0, as T' — oo,
é:mTJrl

and hence
L1
—

HG%

Convergence in L; norm implies convergence in probability. m

Lemma 7 Suppose x; is generated according to (1) and Assumptions 1-4, B1 and B3 hold. Then
for anyi > 1,

H GIC@ p (87)

where matriz G; is defined by equation (73), and CZ-, is defined by equation (80). Consider now the
case where Assumption B2 is replaced by the weaker Assumption B2, but the other assumptions are
maintained. Then for any i > 1,

H GiCi.

7 20. (88)

[e.o]
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Proof. The first element of the (mr 4 2) x 1 dimensional vector G/¢,. /VT is

T
1
—= > Ti-1Cir (89)
\/Tt:mT—i-l

Multiplying equation (27) by ¢! (L) and substituting the outcome into equation (24) for @11

yields the following relation for the non-dominant unit.
Tit = f; (L) €1t + d; (L) ¢! (L) V1,t—1 + U4, for i > 1, (90)

where

fi(L) = Ld; (L) ¢ (L) by (L) + b; (L) (91)

The process (;; as defined in (50) can be written as,

Cit = ¢/—1,—¢’Ut71 — gi (L) v, (92)

where

gi (L) = [ra + ki (L) L] b7 (L) (93)

Coefficients in the polynomials ¢~ (L), by (L), and b; ' (L) are absolute summable (see Lemma 2).
(58) implies absolute summability of the coefficients in k; (L), and using the same arguments as in

proof of Lemma 3, we have

|dzg’ = S;<I>€_1r1

sgq>f_1¢1Hoo < Kpt, and by =

< Kpt. (94)
o0

It follows that polynomials f; (L), d; (L) ¢! (L), and g; (L) in (90) and (92) are absolute summable.
Vector ¢_; _; satisfies H(i)*lﬁiHoo = O (N™!) by condition (6) of Assumption 1 and result (A.26)
of Lemma A.5 in Appendix imply (for 6 = d)'_L_i, andp=q=1)

T
1
ﬁ Z 517t_1¢/,1’,7;'l)t_1 g 0. (95)

t=mp-+1

Result (A.27) of Lemma A.5 imply (by setting p =1, and ¢ = 0)

T
1 L
— E €1,t—1V1t — 0. (96)
VT t=mp+1

Noting again that H¢—1,—iHoo = O (N7!), result (A.46) of Lemma A.6 imply (for i = 1, p = 2, and
0=d¢_1_)
E (vig—2¢’ | _vi_1) =0 (N7). (97)
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(97) and result (A.24) of Lemma A.5 in Appendix yields (for n =s1, 0 = d)l—l,—i’ p=1,and ¢ =2)

T
]. ! Ll

-7 E U1,t—2¢71,7ivt—1 — 0. (98)
T t=mp+1

Result (A.47) of Lemma A.6 yields (for p =2 and i = 1)
E (v14—2v1t) = O (N_l) . (99)

(99) and result (A.25) of Lemma A.5 in Appendix imply (for n =s1, p =0 and ¢ = 2)
Z U1,t—2V1¢ Bo. (100)
\/715 mT+1

Similarly to (98) and (100), results (A.24) and (A.25) of Lemma A.5 in Appendix can be used (for
a suitable choice of 1, 6, p and ¢) to show that

T
1 ! Ly
— Z Vit—1Q_1 V-1 — 0, (101)
\/Tt:mT—i-l
and
Z Vit— i 20, (102)
t mp—+1

where we have also used Lemma A.6 (for a suitable choice of p, ¢ and 6), which implies
E(vig1¢" 1 _vi—1) =0 (N7, (103)

and
E (vig—1v) = O (N71). (104)

Substituting equation (90) for x; ;1 and definition of (; (see (92)) in (89), and using results (95),
(96), (98), (100), (101) and (102) establish

Z CCZ t— 1<zt

t mp+1

— 0, (105)

where we have used the fact that the coefficients of the polynomials f; (L), d; (L) ¢~ (L), and g; (L)
are absolute summable. Similarly to proof of result (105), Lemma A.5 in Appendix can be used

repeatedly for a suitable choice of p,q, 7 and 6 to show that

Z T1,t-pCit

t mp—+1

ma 0, (106)
PG{U:1’2: 7mT}
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where x4 is given by (40). Results (105),(106) complete the proof of (87) by noting that convergence
in L; norm implies convergence in probability. Proof of result (88) can be constructed in the same
way, but this time Lemma A.4 is used instead of Lemma A.5 and the expansion rates considered
for N and 7" under Assumptions Bl and B2. =

Lemma 8 Suppose x; is generated according to (1), and Assumptions 1-4, B1 and B3 hold. Then
forany i >1,

i —H;) e
H(G)e 2o, (107)

vT

where G; and H; are defined by (73), and (79), respectively. Consider now the case where Assump-

o)

tion B3 is replaced by the weaker Assumption B2, but the other assumptions are maintained. Then
for anyi > 1,

2 0. (108)

(Gl‘ — Hi), €e;.
T

o0
Proof. Since |¢;;| < 1 by condition (16) of Assumption 4, polynomial (1 — ¢;;L) " exists (for any
i =2,3,..., N). Multiplying equation (A.8) in Appendix by (1 — ¢;;L) " yields

Tip — & = (1 — ¢y L) 1B (L) 9oy + C], for i = 2,3, ..., N, (109)

where (;; is given by (92). Under Assumptions Bl and B3, and using (109) and Lemma A.5 in
Appendix (results (A.28) and (A.29)), it can be shown that (for a suitable choice of p, ¢ and vector

0, similarly as in proof of Lemma 7), for any 7 > 1 we have

T
1
max E|l— Tit—p—Eiy ) eir| — 0, 110
je{1i}, pefl.2,...mr} ﬁ t—§+1 ( Jt—p £J,t p) it ( )
and
1 T
El—= Z (21t — &1¢) €t| — 0. (111)
T,
=m7r+1
Noting that
o (fcl,t—l - 51,t—17$1,t—2 - fl,t—27 coy Tlt—myp — 51,t—mT) fori=1
git —hy = ,
(CCz',t—l - éi,tflaxlt — &1y T14-1 — fl,tfp <oy Tlt—mp — gl,tfmT) fori>1

then (110)-(111) establish (107). Proof of (108) is identical, but this time Lemma A.4 is used
instead of Lemma A.5, together with Assumptions Bl and B2. m

Using Lemmas 4-8, it is now straightforward to establish consistency of 7; in the following

theorem.

Theorem 1 (Consistency) Suppose x; is given by model (1) and Assumptions 1-5, B1, and B2
hold. Then
|7 — il 20, for any i € N, (112)
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that is 7; defined by equation (74) is a consistent estimator of ;.

Proof. Suppose ¢ > 1. Taking maximum absolute row-sum matrix norms of both sides of equation
(78), we have

GG\ ! Gle;.
‘Ai__ ; < Ak __(371 1=
|7~ < H(T ) - |15
_ G, —H) e, Hle;. Gi¢;. Glp;.
(3'1 ( 2 ? ? 71 197 P’

where HCi_lHOO = O (1) since §;; is a stationary invertible process with absolute summable auto-
covariances. The desired result (112), for ¢ > 1, now follows using Lemmas 4-8 and noting that
|Hje;./T|| 2, 0 by results (A.15) and (A.16) of Lemma A.4 in Appendix. Consistency of 71 can

be established in a similar manner. m

4.3 Asymptotic Distribution of 7;

We continue to focus on the estimates 7; for ¢ > 1. Derivation of the asymptotic results for 71 can

be established in a similar manner.

Theorem 2 (Asymptotic normality) Suppose x; is given by model (1) and Assumptions 1-5, B1,
and B3 hold. Then for any sequence of (mg + 2) x 1 dimensional vectors a such that ||al|; = O (1),
we have
\/Taiac (Fi— ) 4 N(0,1), for any i€ {2,3, ..}, (113)
1

where 7; and C; are defined by (74) and (65), respectively, and o? = Var (eit). In addition, for

any sequence of mr x 1 dimensional vectors b such that ||bll; = O (1), we have

1 Lo
VT—b'C? (71 —m) % N (0,1), (114)

Ocl

where w1 and Cy are defined by (74) and (65), respectively, and o2, = Var (e11).

Proof. Suppose i > 1.

1 _1He,.
3

g

1 1
!
—a C?

0;

<

1 Lo
H\ﬁa’Ci2 (i —m;) —
o

o0 [e.9]

) (115)

H
=
o

‘ oo
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1
where Uiia/Ci2 = O (1). Using (78) we have
Hie;. G/G;\ ! Gle;.
VT (7 — ;) — C71 il < < i Z> —ct ‘ i
fre-m-cz] < (5 VTl

_ G, —H,) e; Gi¢,.
N (e R 2
T
+ler S|
20, (116)
where the convergence follows from Lemmas 4-8. Furthermore,
ia’c;%Héei' 4 N(0,1) (117)

g;j \/T

is a standard time series result, which can be established using the martingale difference array
central limit theorem (Theorem 24.3 of Davidson (1994)) in the same way as Lemma 6 of Chudik and
Pesaran (2010). Equations (115)-(117) establish result (113), as desired. Asymptotic distribution

of 771 can be established in a similar manner.

4.4 Extensions

Straightforward relaxation of Assumption 1 would be to incorporate more general neighborhood
effects with a priori known spatial weights matrix or a priori known selection matrix that selects
neighbors for unit ¢. This extension is straightforward along the lines of CP and we provide below
some Monte Carlo evidence in case of three neighbors per unit. The presence of deterministic terms
or observed and unobserved common factors could also be tackled along the same lines as in CP. It
is also possible to allow for more than one dominant unit in the IVAR model so long as the number

of dominant units is fixed and the identity of the dominant units is known a priori.

5 Monte Carlo Experiments

In this section we report some evidence on the small sample properties of the augmented least
squares estimator 7;. The data generating process (DGP) is given by the following stationary

IVAR featuring the dominant unit and augmented by an unobserved common factor.

(x¢ —=vft) = @ (x¢-1 — v fr1) + (118)

where

u; = Rey =rie1: + ey, (119)

which corresponds to model (1) augmented by unobserved common factor f; and residuals corre-

spond to (8) and (20). Our focus is on estimation of the lagged own coefficient in equation for the
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non-dominant unit ¢ = 2, namely ¢q9, the lagged neighbor coefficient, ¢y3, and By = 721 in (69),
when v = 0.7 Corresponding ALS estimators for these coefficients are denoted by qAbQQ, 523, and
EQO, respectively.
The elements of ® are generated so that unit 1 is dominant, and there are non-zero neighborhood
effects. To this end we first generate
U forj ¢ {l,ii+1}
wij = Zj¢{1,i,i+1} Sij ,
0, for j € {1,4,i + 1}

with ¢;; ~ IIDU (0,1). This ensures that w;; = O,(N~1), and Z;VZI w;j = 1. Individual elements

of the matrix ® are then generated as follows:

1. (Dominant Unit i = 1) ¢y; = 0.7, and ¢y; = \wy; for j =2,3,..., N, with A = 0.1.

A2 =0.1.

3. (Remaining units i > 2) ¢;; ~ ITDU (0.3,0.5), ¢ ~ ITDU (0,0.1), ¢; 4, ~ IIDU (—0.2,0.2),
and ¢;; = Aw;; for j ¢ {1,4,4+ 1}, where \; ~ I1DU (—0.05,0.15).

The focus parameters of the dominant unit 1, and unit ¢ = 2 are fixed across all experiments.
The remaining parameters are generated randomly. In all experiments ® is generated such that
@], <0.95, which is a sufficient condition for stationarity of the IVAR model.

Two sets of factor loadings are considered, ¥ = 0 (no unobserved common factor) and ~ # 0.
Under the latter we set v; = 1, v = —0.5, and the remaining factor loadings are generated
randomly as v; ~ 0.5¢;; + [IDN (1,1) for i = 3,4,...,N. The factor loadings are generated to
depend on ¢;;, so that the robustness of the ALS estimator to this type of dependency can be

evaluated. The common factor f; is generated as
fo=ppfi1+ g,

where egy ~ IITDN (0, 1-— p?), which yields Var (f;) = 1. We choose relatively persistent common
factor with py = 0.9. We set e;; = 0 and generate the remaining error terms {ea, €3t ..., ent} from
a stationary spatial process in order to show that our estimators are invariant to the weak cross
section dependence of innovations. The following bilateral Spatial Autoregressive Model (SAR) is
considered.

Qa,
eit = 56 (€i—1,t + €it1,t) + Neits (120)

where 1., ~ IIDN (0, U%e). As established by Whittle (1954), the unilateral SAR(2) scheme

€it = 0e1€i—1,t + 0e2€i—2,t + Mest (121)

"Similar results are also obtained for other cross section units.
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with 0o1 = —2be, de2 = bg and b, = (1 — M) /ae, generates the same autocorrelations as the
bilateral SAR(1) scheme (120). The error terms are generated using the unilateral scheme (121)
with 50 burn-in data points (i = —49,—48,...,0), and the initializations e_5; = e_50 = 0. The
spatial AR parameter, a., is set to 0.4, which ensures that the process {e;;} is cross sectionally
weakly dependent. O'%e = Var (n,;)is chosen so that the variance of errors e;; is equal to 0.1.%
e ~ IIDN (0,0.15) and r1; = 1, which implies that Var(ui;) = 0.15. The second element of r;
in (119) is set to r2; = 0.1 and the remaining elements are generated as r;; ~ I1DU (0,0.2) for
1=3,4,...,N.

We consider three different types of augmentation. In addition to the lagged neighbor unit 3,
the regression for unit ¢ = 2 is augmented by the following set of regressors: (i) the current and
lagged values of the dominant unit, {z1,_¢},"%, (#) the simple cross section averages {Z;_¢},%,
and (ii1) {x14-¢,T¢—¢}, - In all the three cases mr is set to the integer value of T3, which we

denote by [Tl/ 3] . For example, under case (i) the ALS regression for unit i = 2 is specified as:

()

Dot = Co + oo 1+ PogTzi 1+ Y biewigg+ e (122)
=0

5.1 Monte Carlo results

We report results for experiments without the unobserved common factor first. Table 1 summarizes
the results for the own coefficient &322, and Table 2 summarizes the results for the neighbor coeffi-
cient, ¢,3. Each table gives the bias and the root mean squared error (RMSE) of the estimator as
well as the empirical size and power of tests based on it. The results for <2>23 are a little better but
overall similar to those for &22. The bias and RMSE of these estimators decline as N and T are
increased irrespective of the augmentation procedure adopted. This is because in the absence of a
common factor the dominant unit and the cross section averages are asymptotically equivalent and
either set of variables (with long enough lags) are sufficient to deal with the cross section depen-
dence and the omitted variable problems in the IVAR model. The augmentation by cross section
averages has the advantage that it works regardless of whether strong cross section dependence is
due to a dominant unit, or due to a different source such as an unobserved common factor. Full
augmentation by the dominant unit as well as the cross section averages is not necessary in the
absence of a common factor, and yields worse outcomes in terms of RMSEs. See the third panel of
Tables 1 and 2.

The empirical size of the tests for values of T' > 50 are also close to the 5 percent nominal level.
For smaller values of T', however, there is a negative bias and the tests are oversized. This is the
familiar time series bias where even in the absence of cross section dependence the LS estimators of
autoregressive coefficients are biased in small T" samples. But the size of the tests does not change
much with N, which is in the line with the findings reported in CP. Overall, these findings suggest
that N need not to be very large for the ALS estimator to work.

8The variance of errors {e;;} is given by 02 = (1 + J¢2) [(1- 632) — 631] /(1 —de2).
Ymr =2,3,4,4,5 for T = 25,50, 75,100, 200, respectively.
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Results for 520 are reported in Table 3. The top panel summarizes the results when the regres-
sion is augmented with {xl,t—Z}T:To? as suggested by the theory. In this case the bias and RMSE
of 320 declines with N and T', and the empirical size is close to the nominal value of the test, very
much in line with the results reported for &522 and éﬁzg. In contrast, the estimates at the bottom
panel of Table 3 that are based on regressions augmented by {ath_g,ft_g}Zfb, behave less well and
for a given T' the RMSEs deteriorate as NV increases. The inclusion of cross section averages lead to
a multicollinearity problem since {xljt_g}znzTo and {Z;_},-% will be asymptotically equivalent. But
this asymptotic multicollinearity problem does not affect the estimation of @9y and ¢os.

Results for the experiments with the unobserved common factor are reported in Table 4 (own
coefficient ¢o,) and Table 5 (neighbor coefficient ¢o3).!% Theory suggests that augmentation by the
dominant unit or by the cross section averages alone is not enough for consistent estimation in the
presence of a dominant unit as well as a common factor, f;. This is confirmed by the MC results
in Tables 4 and 5, which indeed show substantial biases and significant size distortions in cases
without the full augmentation (the empirical sizes are in the range 17% — 70% for N = T' = 200).
The ALS estimator based on the full augmentation is correctly sized for larger values of N and
T and overall its performance is very similar to the experiments without the unobserved common

factor.

6 Concluding Remarks

This paper has extended the analysis of infinite dimensional vector autoregressive (IVAR) models
by Chudik and Pesaran (2010) to the case where one variable or a cross section unit is dominant in
the sense that it has non-negligible contemporaneous and/or lagged effects on all other units even as
the cross section dimension rises without a bound. We showed that the asymptotic normality of the
augmented least squares (ALS) estimator continues to hold once the individual auxiliary regressions
are correctly specified. Satisfactory finite sample performance was documented by means of Monte
Carlo experiments.

How to specify the individual regressions is an important topic, and the correct specification
depends on a number of assumptions, namely the presence of dominant units, observed and un-
observed common factors and spatiotemporal neighborhood effects. How to identify the dominant
unit(s), the number of the unobserved common factors (if any), and the nature of (spatial) contem-
poraneous dependencies are issues of utmost importance that lie outside the scope of the present
paper. These topics together with the extension of the analysis to nonstationary IVAR models

must be left to future studies.

0Results for BQO are not reported in this case since only in the absence of common factor, coefficient 5, corre-
sponding to the contemporaneous value of the dominant unit equals 721, as shown in equation (69).
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A Supplementary Lemmas and Proofs

Lemma A.1 Let ¢ (L) =>2, Y, LY, ¥y =1 and there exists a real positive constant 0 < p < 1 such that |1b,| < p*
for any £ € N. Then there exists polynomial 0 (L) = 35, 0,L" such that ¢ (L) 0 (L) = 1,

10,] < (1 + @) p* for any £ € N, (A1)

and there also exist real constants K < oo, and 0 < p; < 1 such that

00| < Kpt for any € € N. (A.2)
Proof. We have
6o = 1,
91 = _¢17
02 = =901 — 1y,
03 = —1102 — 1301 — s,
0y = —,03 —1Py02 — 1361 — P,
Note that
0] = [¢4],
102] < [¥1]101] + [¥s]
03] < [ty ]02] + [¥o] [61] + [¥5]
104 < [9q] 03] + [¥a] [O2] + [105] [01] + [l ,

and by recursive substitution

0] = ¥l

02] < [l [61] + [95] = b1 |* + |2, ],

03] < [y | 102] + o] 101] + [05] < [0y ] [191]7 + [al] + [Wha] [9b] + |5,
03] < [P+ 20| 9] + |9l

0] < |t + 3100 (0ol + 2191 | [¥3] + |90a] + |4l -

Suppose that |1;] < p* and 0 < p < 1. Then in general
s—1
65 < <1+Zj> p°,
j=1
s(s—=1)\ &
1422~
(145 2)
Choose a positive real constant € > 0 such that p <1 —e. We have
s(s—1) s p \°
1 1—¢)° {— ) ,
(1552 oo (722)
s(s—1
[

where p; = p/ (1 —€), p, =1 — ¢, and note that 0 < p; < 1,0 < p, < 1. Also,

-1
(1—1—5(82 ))/)§—>07 as s — 00,

0]

IA

16|

IN

10|

IN
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which implies existence of a real constant K < oo such that

(1+¥)p;<[f

It follows that |0s] < Kpj, as desired. m
Lemma A.2 Suppose x; is generated according to (1), and Assumptions 1-4, B1, and B2 hold. Then
2
1I§nz‘a§)§vE (:rlt) <K, (A.3)

for any N € N, and any t € Z, where constant K does not depend on N.

Proof. Taking Li-norm of (40) and using triangle inequality, we obtain
el , = 161 +Peell, <NEwellp, + 19etll L, - (A4)

where £, = a™* (L) 11 (see (66)). Noting that E (9.:) = 0, (41) implies
[9etll, = O (N712) (A5)

Since coefficients of a~* (L) = ¢~ * (L) b1 (L) are absolute summable (see Lemma 2), E (¢1:) = 0, and 02, = Var (e11)

is bounded under Assumption 2 (condition (10)), we have
€12l 1, < K- (A.6)
Using (A.5) and (A.6) in (A.4), we obtain

E (21,) = [lzu]l7, < K < oo, (A7)
where K does not depend on N.
Now suppose i > 1. Subtracting (67) from (48) yields
(L= ¢uL) @i = (1= ¢ L) &5y + B (L) Vet + G, (A.8)

where ¥ = 14 — &, (see (40) and (66)), and ¢, is given by (50). |¢,;| < p < 1 by condition (16) of Assumption 4,
L) is invertible for any i € {2,3,...}. Multiplying (A.8) by (1 — ¢,,L)"", taking Lo

norm and using triangle inequality yields

and therefore polynomial (1 — ¢

(%2

||$it||L2 = ||§zt + (1 - ¢u‘L)_1 B; (L) Jet + (1 - ¢u‘L)_1 (itHL2
€0l oy + 1= 6:2L) ™" By (L) Ve, + (|1 = 60:L) "l

IN

But coefficients of (1 — ¢
E (7.90t) - O7 andu

L)™' and B, (L) are absolute summable, see Lemma 3. Using (41) and (54), noting that

[€iell L, < K, for any N € N, and any i = {2,3,..., N}, (A.9)
H(l - ¢iiL)_1 B (L) 19““@ =0 (N_l/z) , and H(1 - ¢iiL)_1 Cit”LQ =0 (N_l/Q) s

we obtain
E (mft) = szt|\2L2 < K for any N € N and any i = {2,3,...,N}. (A.10)

Results (A.8) and (A.10) establish (A.3), as desired. m

"Result (A.9) follows from definition of stationary process &;, (given by (67)) by noting that Var (e;:) is bounded
under Assumption 2 (conditions (10) and (11)), coefficients in polynomial 3, (L) are absolute summable (see Lemma
3) and that (A.6) holds.
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Lemma A.3 Suppose x; is generated according to (1), and Assumptions 1-4, B1, and B2 hold. Then there exists a
constant K < 0o, which does not dependent on N, mpr € N, i,5 € {1,2,..., N}, and s € {1,2,...,mr}, such that

2

T
1
E T Z witwj,t—s*E(fitfj,t—s) <

t=mp+1

, (A.11)

S

where €, fori € {2,3,...}, is defined by equation (67) and &, is defined by (66).
Proof. (A.11) can be established in a similar way to the proof of equations (2.10) and (2.11) in Berk (1974). m

Lemma A.4 Suppose Assumptions 1-4, B1, and B2 hold. Then for any p,q € {0,1,2,...}, any ¢ € {2,3,...}, any
N x 1 dimensional vectors 8, n and a, such that ||n||, = O (1), ||0]] = O (1) and ||al]| = O (1), we have

T
% Z 0'vi pn'vi_g— E (6'vipn'vi_y) 5 0, (A.12)
t=mp+1
1 - L
T > e p0'vig 30, (A.13)
t=mp-+1
1 a L
T Z 0'v, pa'e; g — FE (0'vi_pa’erq) =0, (A.14)
t=mp+1
1 a L
T > &pen 30, (A.15)
t=mp+1
and
1 - L
T > &iigen 30, (A.16)
t=mp+1

where convergence is uniform in p, and v¢ is defined by (22).

Proof. Let Ty = T (N) and mq, = m (In) be any increasing integer valued functions of N satisfying Assumptions

B1 and B2. Define the following two-dimensional array'?

1 o
KNt = 7/ U €1,t—pUt—
TN P 9
and the non-stochastic array
1
CNt = =
'

Tn

ENt t=—o0

for any t € Z, and any N € N. Consider now the triangular array {{“’W ,th} } , where {Fn:} denotes an
N=1

array of o-fields that is increasing in ¢ for each N, and kn+ is measurable with respect to Fn:. Using independence

of e, = R_1€; and &4 for any t,t' € Z (see Assumption 2), we have

KN >
E (TN: | ]:N,tfn) = F <Z 6'<I>é_1et—q—£€1,t,p | fN,tn) ,

£=0
0 forp<n

o0
> 9"}[_1et,q,gs17t,p forp>n
=01 (n,q)

where

41 (n,q) =max{n —q¢,0}.

2Note that k¢ is also a function of p and g but we ommit these subscripts to simplify notations.
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Also,

2 o0
sup }E{[E(mlﬂn)]} = ol Y. 0'®,R_.E(ee;)R,®"0,

p€{0,1,... CNt £=£1(n,q)

< Sngs

where
Sng =021 [[Var (e)[[ [R-1 01> > [[@-1]*.

=01(n,q)
Condition (11) of Assumption 2 implies |[R_1|| < |R-1||, [R-1]l, = O(1), 021 < K and |[Var(e)|| < K by
condition (10) of Assumption 2, and ||[®_1| < /||[®—1]; |[®-1]l., < p < 1 under Assumption 4, condition (16).
Since also ||@|| = O (1), it follows that (for any fixed g € No)

So,q < K and ¢,q — 0 as n — oo.

Therefore, array {xn:/cn¢} is uniformly bounded in Lz norm, which establishes uniform integrability. Furthermore,
using Liapunov’s inequality, two-dimensional array {kn¢, Fn¢} is Li-mixingale with respect to non-stochastic array
{cnt}. Noting that

. . 1 Ty—mry
A}gnoo Z CNt = A}gnoo Z ™~ T~ 1< oo, (A.17)
t:'mTN+1 t=mmp,, +1
TN TN
. 2 . 1 TN — mr
Jdim Y7 = Jim =m0 (A-18)
t:mTN+1 t:mTN+1

it follows that the array {rxn+, Fn: } satisfies conditions of a mixingale weak law,'® which implies ZZZVMT 41 BNt = 0,
N
uniformly in p since the upper bound ¢,, does not depend on p. This completes the proof of result (A.13).
Result (A.14) is established in a similar fashion as result (A.13). This time we define
KNt = i [G'Ut_ a'e,_,— E (O'Ut_ a'e;_ )]
T P q P a)l>

for any t € Z, and any N € N. Again let {Fn+} denote array of o-fields that is increasing in ¢ for each N and s is
measurable with respect to Fn¢. We have

S 0P R_i[er—praer_q— F(ei—paler—y)] forg>n
E (szt | }-N,rn) =\ =hben) ' ' ! ’ ’ ’ (A.19)
e 0 forg<n
where
43 (p,n) = max{n — p,0}.
Define

Ztpgl = (Olée_lRflstfpfe) (a'st,q) . (AQO)
Using (A.20) in (A.19), we obtain

2 > S (B Guaeznan) — E (zpat) E (2upan)] for ¢ = n
E { [E (? | fN,HL)} } =< t=ts(p,n) h=Ls(p,n) e " " . (A21)
e 0 for g <n
Note that
0 for £ #p—q

FE (z =
(2tpae) { 0'®" R_1Var(e;)a forl=p—q

"*See Theorem 19.11 in Davidson (1994).
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This implies that

i E (supae) = 0'®" "R_1Var (et—q)a for p—q > max{p—n,0}
0=05(p,n) - 0 p—q<max{p—mn,0}

But

< K,

where as before [|@|| = O (1), |la]| = O (1), |®-1]| £ V/I[®-1]; [[®-1]l, < p <1 (by condition (16) of Assumption
4), |IR-1|| < [|R=1]|; IR=1]l, = O (1) (by condition (11) of Assumption 2) and ||[Var (e:—q)|| = O (1) (by condition
(10) of Assumption 2). It follows that for ¢ > n,

0'®" RVar(ei-g)a| < (0] |8 [R-sl|[Var (i) [l

sup S E(pg) S E(zpan) < K. (A.22)

pe{0,1,2,...} £=£5(p,n) h=£3(p,n)

Using similar arguments (and noting that fourth moments of €;; are uniformly bounded in i), it can be shown that

sup > > E(ztpqezipen) < K for ¢ > n. (A.23)
p€{0,1,2,...} £=L5(p,n) h=L2(p,n)

Results (A.21), (A.22) and (A.23) now establish the existence of a non-stochastic array, ¢,4, such that
KN 2
sup E{[E( t |]-'N,t7n)} } < Sng)
pe{0,1,2,...} CNt

Sog < K and ¢p,q — 0 as n — oo.

where for a fixed ¢ € {0,1,2,...},

Therefore, array {xnt/cn¢} is uniformly bounded in Lz norm, which establishes uniform integrability. Furthermore,
using Liapunov’s inequality, two-dimensional array {kn¢, Fn¢} is Li-mixingale with respect to non-stochastic array
{cnt}. Noting that equations (A.17)-(A.18) hold, it follows that the array {xwn:, Fn¢} satisfies conditions of a
mixingale weak law,'* which implies ZtTngNH KNt I 0, uniformly in p since the upper bound ¢, does not depend
on p. This completes the proof of (A.14).

Results (A.15) and (A.16) can also be established in the similar fashion as result (A.13), but this time we define
KNt = ﬁfl,t,pen to establish result (A.15), and kKNt = ﬁﬁi,pleit in order to establish result (A.16). Result (A.14)
can be established in the same way as Lemma 1 in Chudik and Pesaran (2010). This completes the proof. m

Lemma A.5 Let assumptions 1-4, B1, and B3 hold. Then for any i € {1,2,3,...}, any j € {2,3,...}, any p,q €
{0,1,2,...}, and any N x 1 dimensional vectors 6 and n, such that ||n||, = O (1) and |6, = O (N~'),

T
1 /
— Z 0'vi_pn'vi_g — /2 E (\/N@"ut,pn Ut,q) Ho, (A.24)
\/T t=mp+1
T
1 / ’ Ly
— Z V14— pN Vi—g — V22 E (VN1 pnvi—g ) 30, (A.25)
\/T t=mp+1 ( )
T
1 / Ly
—= > e p0vig 30, (A.26)
\/T t=mp+1
T
1
VT 3 eniopvii—g 230, (A.27)

t=mp+1

""See Theorem 19.11 in Davidson (1994).
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1

T
\/T Z 0'vt,pei,t,q — \/%QE (\/ﬁa'vt,pei,t,q) L—1> 0, (A28)

t=mp+1

and

T
1 Ly
—= D ULi—pii—q =0, (A.29)
T t=mp+1

where convergence is uniform in p, vy is defined by equation (22), e is defined by (20), and 2 = lim(T/N) as
(N, T) % .

Proof. We have

T T
1 [T |1 !
ﬁ E el'l)t_pn/'l)t_q = N T E (V Ne) ’Ut_p'f]I’Ut_q s (A30)

t=mp+1 t=mp+1

|VNe|| = /N o1l 811, = 0 (1). (A.31)

Using now result (A.12) of Lemma A.4 yields

where

T
% Z b'vi_yn'vi_g — E [b'vi_pn'vig] B uniformly in p, (A.32)

t=mp+1

!’
under Assumptions Bl and B2, where b = (\/NO) , and ||b]| = O (1) by (A.31). Multiplying (A.32) by (T/N)/2,

and noting that Assumption B3 is a special case of Assumption B2, where (N, T) ERISEY' any rate, and that under

\/%H\/%2<OO,

T
1
— Z 0'vi_pn'vi_g — /72 E (\/ N@I'Ut_pn/vt_q) 2y uniformly in p,
\/T t=mp+1

under Assumptions Bl and B3, as desired. This completes the proof of (A.24). Similarly, result (A.26) follows

Assumption B3,

we obtain

directly from result (A.13). Result (A.28) can also be established in a similar way by using (A.14) and noting that
eii—q =a'ey_q for a =R’ ;s; and that ||[R.;si|| < /[[R-1]]; [R-1]l, = O (1) by condition (11) of Assumption 2.
To establish result (A.27), we make use of equation (30), which implies

vig =r_161 + @ U1, (A.33)

where r’"_;e; = e1; and vector ¢_, satisfies

¢_ill. =0 (NT"), (A.34)

by condition (5) of Assumption 1. Using result (A.26) for 8 = ¢_; we have

T

1 / Ly . .

— E €1,t—p@P_1Vi—q — 0 uniformly in p, (A.35)
T t=mp+1

for any p,q € {0,1,2,...}, under Assumptions Bl and B3. Similarly, r_; satisfies
lr-ill =O(N7Y), (A.36)

by condition (12) of Assumption 2. Noting that v reduces to

vi=» ® R e =g for® 1 =0and R =11,
£=0

where I_ is identity matrix with the first column replaced by zeros, result (A.26) implies (for 8 = r_;,®_1 = 0 and
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R_1 = I_1) that
T

% ti;ﬂ E1,t—pT_1Et—q 2y} uniformly in p, (A.37)

for any p,q € {0,1,2,...}, under Assumptions Bl and B3. (A.33), (A.35), and (A.37) now establish (A.27), as desired.

Result (A.29) is established in a similarly way by making use of (A.28) and (A.33). For 8 = ¢_; (see (A.34)),
(A.28) implies

T
1
N Z @1 Vi—peit—q — 32 E (\/Nqbl_lvt_pei,t_q) 23| uniformly in p, (A.38)
t=mp+1
under Assumptions B1 and B3, where
N¢' , ®TPFE (e;_qeis— fi >
FE (\/N(ﬁl,lvt—pei,t_q) = \/7(1)71 TVE (er—qein—g) forq=p , (A.39)
0 for g <p

HE (\/ﬁcb',lvt—pei,t—q)

H¢>71Hoo = O(Nfl) by condition (5) of Assumption 1, [[®_1]|I77 < p?7? < 1, for ¢ < p, by condition (16) of

Assumption 4,

| S VN[ ¢oll 121l 1 (ermgein-i)ll, = O (N72),

1B (et—qeit—a)lly < [R-1lly [R-1ll IVar (el ,

IR-1]; [R-1]|,, < K by condition (11) of Assumption 2, and ||Var (g:)||; < K by condition (10) of Assumption 2.
For 0 =r_1,®_ 1 =0and R_; =1_1, (A.28) implies
1 z / / Ly : .
7T Z r_1€t_plit—q — /2 E (\/Nr,let_pei,t_q) — 0 uniformly in p, (A.40)
T t=mp+1

under Assumptions B1 and B3, where

VNr' _18; f =
E (\/er,lst_pei,t_q) - roaRoas forg=p (A.41)
0 for g #p

HE (v Nr/,let,pei,t,q)

[r-1]l, = O (N7") and |[R-1]|, < K by Assumption 2 (see conditions (12) and (11), respectively). (A.38)-(A.42)
establish (A.29), as desired.

Result (A.25) is also established by making use of equation (A.33). For 6 = ¢_, (noting that ¢_, satisfies
(A.34)) and for any vector i such that ||n||, = O (1), (A.24) implies

| S VNIl IRl =0 (N7F), (A.42)

T
1
77 Z ¢ Vi—pN Vi—q — /32 E (\/ﬁ(b’_lvt,pn'vt,q) o uniformly in p, (A.43)
t=mp+1

under Assumptions B1 and B3. Result (A.14) of Lemma A.4 implies by setting a =v/Nr_; and noting that ||a|| =
VA [le-1] = VN /el ool = O (1) (see (A:36)), we have

T
1 Z 0'vt_p\/ﬁr_1€t_q —F (let_p\/ﬁr_ﬁt_q) 2\ 0 uniformly in p, (A.44)
t=mp+1

el

under Assumptions B1, and B2. Using same arguments as in (A.30), it follows from (A.44) that

T
% Z G’Ut,prflet,q — /s E (G'Utfp\/]vrﬁat,q) ) uniformly in p, (A.45)
t=mp+1

under Assumptions B1, and B3. (A.33), (A.43) and (A.45) establish (A.25), as desired. This completes the proof. m

Lemma A.6 Suppose that Assumptions 1 to 4 hold. Then for any i € N, any p € {0,1,2,...}, and any N x 1
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dimensional vector @ such that 0|, = O (N~'),
E (sjvip0vi1) =0 (N1, (A.46)

and
FE (s,'ivt_pvlt) =0 (N_l) s (A.4T)
where s; is an N x 1 dimensional selection vector with s;; = 0 for j # i and s; = 1, and v¢ is defined by equation
Proof. We have
(oo} oo
Sivt—p0' Vi1 = SjVU_pU,_10 = Zsi@{lR_lst,p,g ZEQ,I,ZR/,lfI)'le. (A.48)
£=0 £=0

aking expectations o . and noting that &; 1s independent istributed of €, for an, we obtain
Taking exp i f (A48 d noting th is independently distributed of fi yi t'7 btai

E (sivt_pe/vt_l) = Z sé@[__lpR_lE (et,gs;,g) R ,®“'0
f=max{1,p}
L— £—1
< Rt IRl 101l IVar (el > [@-1llS” 121777
{=max{1,p}

where [|[R_1]|_ [[R-1], = O (1) by condition (11) of Assumption 2, [|6]| = O (N~'), |E (eier)| . = [Var (e¢)
O (1) by condition (10) of Assumption 2, and [|[®_1|_ < p < 1, ||®_1]|{ < p < 1 by condition (16) of Assumption 4.
It follows that E (sjvi—,0'vi_1) = O (Nfl), as required.

To establish result (A.47), we make use of equation (A.33). We have

Hoo -

E (sivi—pv1r) = E (sivi_pr_ie:) + E (sjvipd_jvi1) .

Noting that ||¢_; Hoo = O (N™") by condition (5) of Assumption 1, result (A.46) (for @ = ¢_,) implies E (sjv¢—p@p’ jvi_1) =
(0] (N_l). Furthermore,

0 forp >0
siR_1E (e1e;)r—1 forp=10

)

E (sgvt,pr'_lst) = {

where

SR E (eie)) o1 < Rl [Var ()l el = O (V7).
using the same arguments as in derivation of (A.46) and noting that |r_i||, = O (N™") by condition (12) of
Assumption 2. It follows that E (sivi—pv1) = O (Nfl), as required. m
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